Устройство, принцип работы и схемы защитного заземления

Виды заземлений

Электропроводка и заземление в зданиях может быть нескольких типов:

  • типа TN-C (глухо заземленная нейтраль), подача напряжения через два провода — один из которых нейтральный, а второй находится под напряжением, ЗАЗЕМЛЕНИЕ ОТСУТСТВУЕТ, необходима его прокладка (возможна только в частном доме);
  • типа TN-S (используется трехжильный кабель) —  ЗАЗЕМЛЕНИЕ ПРИСУТСТВУЕТ, возможна необходимость разводки проводки с заземлением в помещении;
  • типа TN-C-S (используется пятижильный кабель — 3 провода фаза, 4 провод — нулевой, 5 провод — защитное заземление, подключение к отдельной шине в щитке), ЗАЗЕМЛЕНИЕ ПРИСУТСТВУЕТ, возможна необходимость разводки проводки с заземлением в помещении.

Основными отличиями систем типа TN-C от систем TN-S (TN-C-S) является наличие отдельного заземляющего провода в системе TN-S (TN-C-S), у архаичных же систем TN-C отдельного заземления нет, оно выполнено вместе с нулем.

Защита электроприборов

Для обеспечения требуемого уровня защиты при работе с электрическими приборами различного типа возможны следующие защитные меры:

  1. надежная защита открытых для общего доступа токоведущих частей;
  2. усиление защитной изоляции методом ее наращивания;
  3. ограничение доступности к корпусам оборудования.

Кроме того, для этих целей могут применяться пониженные напряжения (если это позволяют особенности конструкции).

Чтобы избежать нежелательных пробоев изоляции и попадания опасного напряжения на корпуса электроприборов используются следующие «классические» методы:

  • Наличие защитного заземления.
  • Система выравнивания потенциалов.
  • Дополнительная (усиленная) изоляция токоведущих частей.

В отдельных случаях ограничение проявляется в том, что такие образцы электроаппаратуры не допускается эксплуатировать в особо опасных помещениях (влажных или с сильным запылением). Если наряду с заземлением применяются другие способы защиты работающих с приборами людей – они не должны взаимно исключать друг друга. Другими словами их действие не должно снижать эффективность уже имеющейся и работающей в этом месте защиты.

Применение элементов естественных заземлителей допускается только в ситуациях, когда исключена вероятность нанесения подземным конструкциям ощутимого ущерба, связанного с протеканием по ним аварийного тока.

Рабочее заземление

Предназначено для обеспечения нормальной работы оборудования во всех режимах работы. Это относится и к аварийным ситуациям.

Рабочее или функциональное заземление — это заземление точки или точек токоведущих частей оборудования, предназначенное для обеспечения работоспособности электрооборудования, не в целях электробезопасности.

На рисунке снизу показана схема из учебника рабочего заземления для различных сетей.

Функциональным назначением данной опции является поддержание работоспособности оборудования и защитных аппаратов в штатном и аварийном режимах. Зачастую она используется для срабатывания специальных устройств.

Это могут быть плавкие предохранители, резисторы и т.п. Основным назначениям функции является препятствие сбоям, их локализации и препятствие их распространению.

Правила техники безопасности запрещают совмещать защитное и рабочее заземление. Что связано с тем, что электрические атмосферные помехи, например, от грозозащиты зданий и сооружений, могут совместиться с токами сети.

Это может привести к сбоям оборудования, например, компьютеров, сложной электронной техники и т.п. А так же к выходу оборудования из строя.

Кроме этого, такое совмещение сделает защиту от напряжения не эффективной. А в аварийной ситуации она вообще перестанет функционировать.

В качестве заземлителей применяют металлические стержни. Их должно быть не менее двух, и расстояние между ними составляет 1 м.

При этом необходимо соблюдать следующие правила, определяемые по ПУЭ:

  1. В качестве рабочего заземления запрещается использовать трубопроводы в любой ситуации.
  2. Запрещается выводить кабель наружу и подключать к шине в месте неподготовленном для этого. Так как плохой контакт не обеспечит надежной защиты, а в процессе эксплуатации он ухудшится из-за коррозии металла.
  3. Последовательное подключение оборудование к шине заземления категорически запрещается.
  4. Запрещено к одной контактной площадке на шине заземления подсоединять несколько кабелей от оборудования.

На вышеприведенном рисунке показан пример металлосвязи с электрооборудованием.

Особенности рабочего заземления

Является специальным соединением нескольких точек электроцепи с грунтом. Таковыми могут быть нейтральные точки измерительных подстанций и обмоток генераторов. Решение не направлено на достижение безопасности людей, а обеспечивает стабильное функционирование электроприборов. Причем независимо от условий работы (стандартные или аварийные).

Для реализации такового части установки соединяются с почвой посредством проводника. Иногда выполняется с помощью специализированных приспособлений. Ими могут быть резисторы или пробивные предохранители.

← Предыдущая статья Следующая статья →

Принцип действия ЗУ

Ключевой принцип работы заземления заключен в том, чтобы снижать потенциал напряжения точки, которая соприкасается с токопроводящими частями, до того момента, пока это не станет безопасно для людей. Когда опасное напряжение попадает на поверхность оборудования, потенциал заземлителя, который находится ближе всего к нулю, должен быть перенесен в эту самую точку, что создает безопасные и комфортные условия для работы. По истечении времени автоматическое устройство, защищающее от утечек электричества, срабатывает. Линия питающего напряжения деактивируется, устраняя аварийную ситуацию.

Процесс изготовления заземляющих устройств требует соблюдения некоторых особых условий, которые обеспечат надежность и контакт частиц почвы с металлическими поверхностями. Повысить электропроводность можно, погрузив в грунт металлическую конструкцию заземления, а вокруг нее создать зону максимальной удельной проводимости. Добиться повышения этой проводимости можно непосредственным химическим воздействием на землю, например с помощью соли.

Все вышеперечисленные методы способны обеспечить надежное движение электричества в грунт по заземленному основанию защитных конструкций. Помимо того что обеспечивается преднамеренное слияние корпуса электрического оборудования с заземленным механизмом, представленный выше метод может быть использован в критических ситуациях замыкания фазы на почву.

Рабочее и защитное заземление: определение и разница

У заземления в качестве способа обеспечить защиту приборам и людям имеется две разновидности: рабочее и защитное.

Схема защитного заземления

Представителем отдельной группы можно назвать молниезащиту. Не рекомендуется использовать так называемое общее заземление. В этом случае электричество пройдёт через дом, когда молния с ним столкнётся. Ведь дополнительные препятствия будут отсутствовать.

Защитное и рабочее заземление больше всего отличаются друг от друга в том, что защитное предполагает создание соединений с землёй и дополнительными элементами заранее, преднамеренно

В данном случае речь идёт о единственной важной функции – защите человека от поражений со стороны электрического тока

Рабочее заземление основано на использовании другого принципа. Соединение с землёй устанавливается не для целого прибора, но для отдельных элементов. Например, для обмотки. То есть, организуется соединение одновременно для нескольких точек. Это помогает определиться с назначением заземления рабочего типа. Оно становится своеобразной гарантией того, что оборудование будет стабильно, безопасно работать

Это особенно важно для точных приборов, показания которых становятся важными при критических обстоятельствах

Выбор подходящего вида защиты – ответственный вопрос. Ведь требуется учитывать такие важные параметры, как:

  • Особенности строений с конструктивной точки зрения.
  • Применяемые приборы и их характеристики.
  • Особенности самой электрической сети, и так далее.

Для большинства случаев оказывается достаточно заземления с использованием евророзетки. Один кабель у этого приспособления просто соединяется с землёй. Но возможность использования рабочей разновидности защиты тоже стоит предусмотреть. Особенно, когда речь идёт о более мощных приборах, которые поддерживают защитное и рабочее заземление, области их применения.

Подготовительный этап при монтаже контура

Нужно создать специальную схему перед тем, как приступать к работе. Обязательной становится подготовка материалов и инструментов. Контуры при заземлении представляют собой объединённые в единое целое системы. Основные компоненты следующие:

  • Внешний.
  • Внутренний.

Первый строится на основе заземлителей, которых объединяет металлическая обвязка. Вторая часть располагается внутри дома. И представляет собой разветвлённую сеть с проводами. Точка начала – розетки или бытовые приборы, сами сходящиеся с шиной заземления. Последнюю монтируют в счётчике.

Заземление в форме треугольника

Чаще всего внешнее заземление создаётся в форме треугольника. Параметры будут такими:

  • 1-2 метровые стороны
  • оптимальные габариты стороны – 1 метр 20 сантиметров

Но допустимо применение линейной незамкнутой формы, благодаря которой верхние концы получают последовательное соединение друг с другом.

Эта разновидность отличается большей безопасностью, меньшей требовательностью в плане выбора места установки. Но и ряд уязвимостей присутствует. У конструкции уменьшаются токопроводящие способности, как только последовательная связь между элементами нарушается. По-другому выглядят схемы расположения замкнутого типа. Серьёзными преимуществами не отличаются ни круги, ни квадраты.

Изготавливаются заземлители на основе нескольких приспособлений:

  • Металлический уголок, чьё сечение — 50 на 50 миллиметров.
  • Прут или трубы, диаметр которых равен не менее, чем 32 миллиметрам.
  • Минимально требуемая длина изделия – два метра. Обязательному учёту подлежит глубина, где осуществляется промерзание. Длина конструкции должна превышать данный показатель, минимум на 300-400 миллиметров.
  • У заземлителей верхние концы соединяются металлической полоской: длина – от 1 до 2 метров, толщина 4 миллиметра, ширина в 40 миллиметров минимум.
  • Применение других металлических изделий тоже допустимо. Например, отдать предпочтение пруту, у которого есть диаметр до 40 миллиметров.
  • Ещё одна металлическая конструкция нужна для обеспечения ввода в дом. Лучше, если она будет изготовлена из нержавеющей стали. Длины должно хватать, чтобы были полностью соединены контур и место ввода в дом. Не обойтись без приобретения дополнительных крепёжных элементов. Обычно их функцию отдают медному проводу, хомутам или болтам. Минимальное сечение – 4 миллиметра в квадрате.

Для выполнения дальнейших работ по заземлению готовим следующие приспособления:

  • Гаечные ключи.
  • Перфоратор.
  • Сварочный аппарат.
  • Лопата и кувалда.
  • Болгарка или другой подобный инструмент помогут разрезать металл в случае необходимости.

Но при составлении предварительной схемы можно выбрать компоненты нужной длины и диаметра заранее.

Почему в домах нельзя выполнять зануление?

Кстати этот случай наглядно показывает, почему в домах нельзя выполнять зануление, то есть присоединять корпуса приборов к нулевому проводу, как это иногда делают горе-электрики в домах где нет заземления. Действительно, пока все работает нормально, нет большой разницы к нулевому или заземляющему проводу присоединены корпуса защищаемых электроприборов. Но при отгорании нулевого провода на нем, а следовательно и на всех присоединенных к нулевому проводу приборах, появится напряжение 220 В. То же самое произойдет, если при ремонте распределительного щитка электрик перепутает нулевой провод с фазным. В этом случае корпуса приборов окажутся присоединенными не к нулевому, а к фазному проводу и на них тоже будет присутствовать напряжение 220 В.

Итак, токовая цепь это путь тока от подстанции к потребителю и обратно от потребителя к подстанции. Если в каком-то месте она нарушена, тока в цепи не будет. Сидящих на проводах птиц не бьет током только потому, что нет цепи для прохождения тока. Стоящего на резиновом коврике электрика не бьет током, потому что коврик мешает току вернуться на подстанцию по цепи: фазный провод -> электрик -> земля -> подстанция. Вот и причина того почему при одном и том же напряжении ток может лишь слегка щипнуть человека, а может и убить. Все зависит от того есть ли у него надежный путь для возвращения на трансформаторную подстанцию или нет. Если есть, то попавшему под напряжение человеку мало не покажется.

В интернете описан трагический случай, произошедший с мальчиком, захотевшим сделать уроки в вечернем саду. Он взял включенную в сеть настольную лампу с удлинителем и начал выносить ее из дома. Лампа была неисправна – находящийся под напряжением фазный провод касался корпуса лампы. Мальчик держал в руках находящийся под напряжением корпус лампы, но током его не било. Сухой деревянный пол мешал току вернуться к подстанции. Как только мальчик сошел с крыльца и наступил на землю, создалась замкнутая токовая цепь: трансформаторная подстанция -> фазный провод -> настольная лампа -> человек -> земля -> снова трансформаторная подстанция и мальчик был убит током. Трагедии могло не быть. Если бы лампа, удлинитель и проводка в доме были заземлены, то ток с корпуса лампы утекал бы через заземление, не причиняя вреда мальчику.

Если в доме нет возможности установить заземление, то хотя бы следует помнить что у тока не должно быть возможности возвратиться на подстанцию через землю. Только по специально предназначенному для этого нулевому проводу. Ни в коем случае нельзя одновременно касаться электроприборов и заземленных частей, таких как батареи, водопроводные трубы и т п, чтобы не дать току возможность пройти через вас в землю и вернуться к подстанции. Если в помещении сырой пол, то желательно чтобы на вас была обувь с непромокаемой подошвой, которая станет преградой между вами и проводящим полом, в случае если вы случайно попадете под напряжение.

Виды заземления

В классификации видов заземления присутствует два основных его вида:

  • Рабочее.
  • Защитное.

Есть и несколько подгрупп: радиозаземление, измерительное, инструментальное, контрольное.

Рабочее

Существует определенная категория электрических установок, которые не будут работать, если их не заземлить. То есть, основанная цель сооружения заземляющей системы – это необеспечение безопасности эксплуатации, это обеспечение самой эксплуатации. Поэтому в этой статье данный вид нас интересовать не будет.

Защитное

А вот этот вид специально устраивается с целью обеспечить безопасность работы электроустановок. Он делится на три категории в зависимости от назначения:

  • Молниезащита.
  • Защита от импульсного перенапряжения (перегруз линии потребления тока или короткое замыкание).
  • Защита электросети от электромагнитных помех (чаще всего данный вид помех образуется от рядом работающего электрического оборудования).

Нас интересует именно импульсное перенапряжение. Назначение заземления данного типа – это безопасность обслуживающего персонала и самой установки в процессе аварии или поломки оборудования. Обычно такая поломка внутри электрического агрегата – это замыкание провода электрической схемы на корпус прибора. Замыкание может происходить непосредственно или через любой другой проводник, например, через воду. Человек, коснувшийся корпус установки, подвергается воздействия электрического тока, потому что становится его проводником в землю. По сути, он сам становится частью заземляющего контура.Схема заземления в частном доме

Мнение эксперта
Евгений Попов
Электрик, мастер по ремонту

Вот почему, чтобы устранить такие ситуации и устанавливается заземление корпуса на контур, расположенный в земле. При этом срабатывание заземляющей схемы – это толчок для системы автоматов, которые тут же отключают подачу электроэнергии к оборудованию. Все это располагается в специальных силовых и распределительных щитах.

Сопротивление заземлению

Есть такой термин, как сопротивление растеканию тока. Для простых обывателей легче будет воспринимать, как сопротивление заземлению. Вся суть этого термина заключается в том, что схема заземления должна работать корректно с определенными параметрами. Так вот сопротивление является основным из них.

Оптимальный вариант этого значения – ноль. То есть, лучше всего использовать материалы для сборки контура, у которых электропроводность самая высокая. Конечно, добиться идеала никак не получится, поэтому старайтесь выбирать именно те, у которых сопротивление самое низкое. К ним относятся все металлы.

Есть специальные коэффициенты, с помощью которых производится определение показателя сопротивления заземляющего контура, эксплуатируемого в разных условиях. К примеру:

в частном домостроение, где используются сети на 220 и 380 вольт (6 и 10 кВ), необходимо устанавливать контур с сопротивлением 30 Ом.

  • монтируемая газопроводная система, входящая в дом, должна заземляться схемой в 10 Ом.
  • молниезащита должна иметь сопротивление не более 10 Ом.
  • Телекоммуникационное оборудование заземляется контуром 2 или 4 Ом.
  • Подстанции от 10 кВ до 110 кВ – 0,5 Ом.

То есть, получается так, что чем больше мощность силы тока внутри оборудования или приборов, тем ниже должно быть сопротивление

Технические параметры устройств заземления в различных видах электрических установок

От 1000 Вольт при больших токах замыкания

В этом случае для наибольшего сопротивления заземляющих устройств требуется менее 0,5 Ом, однако этим не обеспечивается достаточное напряжение касания и шага токозамыкания 1-2 кА. Поэтому дополнительно выполняются следующие действия:

  • должно быть быстрое отключение на случай замыкания в землю;
  • выравниваются потенциалы по периметру территории местонахождения установки и в ее пределах. Для этого по всей площади от 50 см глубиной закладывают сетку, состоящую из проводников выравнивания для равномерного растекания тока. Продольные части укладываются параллельно осей электрооборудования на дистанции 80 — 100 см от его основания либо фундамента. Затем укладывают поперечные детали и шаг соединения до 6 м. Крайние части сетки, через которые уходит большое количество тока, укладывают глубже на 30-50 см.
  • Такое же выравнивание осуществляют рядом с входами на территорию электрической установки укладкой дополнительно нескольких полос с их постепенным заглублением — расстояние от заземлителя 100 и 200 см соответственно, а глубина закладки 100 и 150 см.
  • Дистанция от периметра контура до ограждения должно превышать 3 м, тогда ограждение можно не заземлять. Подходы, входы и въезды есть смысл делать в виде асфальтовых или гравийных покрытий, из-за их малой проводимости.
  • Чтобы избежать выноса за границы местонахождения потенциала, разрешается присоединять приемники вне территории установки к трансформаторам смонтированным в нее можно лишь при условии изоляции их нейтрали.

Больше 1000 Вольт при небольших токах замыкания

Когда проводится значение R для таких установок, требуется менее 10 Ом. Рассчитать его можно с помощью формулы:

В качестве расчетного используется:

  • показатель тока сработки релейной защиты обязательно гарантирующей обесточивание замыкания на землю;
  • емкость предохранителей.

Необходимо превышение в 1,5 и 3 раза минимального эксплуатационного тока замыкания соответственно над уровнем срабатывания реле или номинальным током предохранителей.

До 1000 Вольт — нейтральный проводник заглушен в землю

Уровень сопротивления заземляющих устройств менее 4 Ом. Когда общая мощность источников и преобразователей напряжения не доходит больше 100 кВА, тогда достаточно уровеня менее 10 Ом.

Заземляемые детали делаются надежно связанными с проводниками заземления или нуля источника электричества.

На воздушных линиях этот контакт делается специально прокладываемым параллельно фазам проводом. В этом случае необходимо сделать повтор заземления нуля с интервалом 250 м, и обязательно в конечной точке линии. Для каждого повтора R меньше 10 Ом.

Если мощность всех источников и трансформаторов в сумме меньше 100 кВА, и для этой сети разрешено R главного ЗУ 10 Ом, то для повторных этот показатель необходим менее 30 Ом в количестве больше двух.

До 1000 Вольт — нейтраль в изоляции

Как в предыдущем пункте, требуется получить уровень R заземляющих устройств менее 4 Ом. Когда же сумма мощности генераторов и преобразователей до 100 кВА, показатель нужен меньше 10 Ом.

Наибольшее значение при касании может быть до 40 В. Из-за этого электробезопасность частей, которые могут оказаться под напряжением в таких сетях значительно выше.

Требования к заземлению сварочных аппаратов

Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.

Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания. Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

  • TN-C;
  • TN-S;
  • TNC-S;
  • TT.

Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

Недостатки:

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.

Конструкция:

  1. PN — нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE — глухозаземленный проводник, выполняющий защитную функцию.

Преимущества:

  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

Достоинства:

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.

Минусы использования:

  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.

Преимущества TT:

  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.

Недостатки:

  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

Зелёная молниезащита (грозоизоляторы)

Зелёная молниезащита ZANDZ (безопасная) — это принципиально отличный от традиционного метод защиты объектов не только от прямых ударов молнии, но и от вторичных поражающих факторов.

Фундаментальная разница в работе зелёной молниезащиты и традиционных (или активных) молниеприёмников, заключается в изоляции объекта от молнии, недопущении образования разряда.

Это позволяет избежать наиболее опасного и труднопобедимого врага чувствительного электронного оборудования и легковоспламеняющихся материалов — электромагнитной волны от молниевого канала, молниеприёмников и токоотводов (вторичный поражающий фактор молнии).

Зелёная молниезащита — это лучший вариант для объектов, на которых одна искра может привести к катастрофе, потере продукции и долговременному простою.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector